2 research outputs found

    VISION: a video and image dataset for source identification

    Get PDF
    Abstract Forensic research community keeps proposing new techniques to analyze digital images and videos. However, the performance of proposed tools are usually tested on data that are far from reality in terms of resolution, source device, and processing history. Remarkably, in the latest years, portable devices became the preferred means to capture images and videos, and contents are commonly shared through social media platforms (SMPs, for example, Facebook, YouTube, etc.). These facts pose new challenges to the forensic community: for example, most modern cameras feature digital stabilization, that is proved to severely hinder the performance of video source identification technologies; moreover, the strong re-compression enforced by SMPs during upload threatens the reliability of multimedia forensic tools. On the other hand, portable devices capture both images and videos with the same sensor, opening new forensic opportunities. The goal of this paper is to propose the VISION dataset as a contribution to the development of multimedia forensics. The VISION dataset is currently composed by 34,427 images and 1914 videos, both in the native format and in their social version (Facebook, YouTube, and WhatsApp are considered), from 35 portable devices of 11 major brands. VISION can be exploited as benchmark for the exhaustive evaluation of several image and video forensic tools

    A New Dataset for Source Identification of High Dynamic Range Images

    No full text
    Digital source identification is one of the most important problems in the field of multimedia forensics. While Standard Dynamic Range (SDR) images are commonly analyzed, High Dynamic Range (HDR) images are a less common research subject, which leaves space for further analysis. In this paper, we present a novel database of HDR and SDR images captured in different conditions, including various capturing motions, scenes and devices. As a possible application of this dataset, the performance of the well-known reference pattern noise-based source identification algorithm was tested on both kinds of images. Results have shown difficulties in source identification conducted on HDR images, due to their complexity and wider dynamic range. It is concluded that capturing conditions and devices themselves can have an impact on source identification, thus leaving space for more research in this field
    corecore